메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sang mi Lee (SungKyunKwan University) Sang man Han (SungKyunKwan University)
저널정보
한국마케팅학회AMJ ASIA MARKETING JOURNAL ASIA MARKETING JOURNAL Vol.22 No.3
발행연도
2020.10
수록면
87 - 105 (19page)
DOI
10.15830/amj.2020.22.3.87

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
With the development of Information Technology, customers require promptly higher quality products and services. Companies try to make newly digital marketing strategies, but there are no empirical researches on them. This article empirically presents a new perspective that companies can shape the customer decision journey ahead by coordinating customer experience. In this article, based on Elaborated Likelihood Model (ELM) theory, customer experience consists of the emotional or cognitive experience. We surveyed about 200 subjects (N = 217) in their 20s and 30s based on the International Music Industry Association"s Music Listening 2019 report, then analyzed four different models (before personalization-cognitive experience, before personalization-emotional experience, after personalization- cognitive experience, after personalization-emotional experience) by JASP and R Studio. We conducted Structural Equation Model (SEM) and paired t-test. Personalization factors are about recommendation systems in Spotify. The results of survey represent that companies can shape the Customer Decision Journey (CDJ) ahead especially through enhance cognitive experience. It empirically proves Elaborated Likelihood Model (ELM). The conclusion can be drawn that ‘pulling’ customer experience can be a new marketing strategies in the digital era.

목차

Ⅰ. Introduction
Ⅱ. Research Background
Ⅲ. Development of hypothesis
Ⅳ. Overview of study
Ⅴ. Implication and Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0