메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Sabir Hossain (Kunsan National University) Oualid Doukhi (Kunsan National University) Yeonho Jo (Kunsan National University) Deok-Jin Lee (Kunsan National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2020
발행연도
2020.10
수록면
1,231 - 1,236 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Nowadays, Deep reinforcement learning has become the front runner to solve problems in the field of robot navigation and avoidance. This paper presents a LiDAR-equipped RC car trained in the GAZEBO environment using the deep reinforcement learning method. This paper uses reshaped LiDAR data as the data input of the neural architecture of the training network. This paper also presents a unique way to convert the LiDAR data into a 2D grid map for the input of training neural architecture. It also presents the test result from the training network in different GAZEBO environment. It also shows the development of hardware and software systems of embedded RC car. The hardware system includes-Jetson AGX Xavier, teensyduino and Hokuyo LiDAR; the software system includes- ROS and Arduino C. Finally, this paper presents the test result in the real world using the model generated from training simulation.

목차

Abstract
1. INTRODUCTION
2. RELATED WORK & DEEP Q-NETWORK
3. PROPOSED METHODOLOGY FOR TRAINING
4. PROPOSED METHODOLOGY FOR TESTING
5. REAL-TIME EXPERIMENT
6. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-001568648