메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Cubahiro Roland (Dong-eui University) Donggyu Choi (Dong-eui University) Jongwook Jang (Dong-eui University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2022 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.13 No.1
발행연도
2022.1
수록면
64 - 67 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Deep learning has known revolutionary improvements since the last decade, hailing as one of the fields with promising achievement for the future. Its different architectures have been applied in various fields such as medical imagery, game programming, bioinformatics, etc. Robotics has been closely dependent on human inputs, proving a deficiency in autonomous decision making. In this paper, we bring the potential of deep neural networks to a ROS-based navigating robot system. Deep Learning technology in robot navigation helps to improve the vision capacities of the robot among other things. In the paper we use the convolutional neural network (CNN) algorithm for image classification, which is one type of neural network architectures available. CNN is based on features extraction across multiple layers and is convenient for perceptual tasks. The implementation has been tested on a Turtlebot3 robot running on ROS, with vision feed provided by a RealSense Camera d435. During the test, the robot was able to navigate a mapped space while sending an identification of recognized objects falling in its vision field and their classification accuracy based on probability.

목차

Abstract
I. INTRODUCTION
II. SYSTEM MODEL AND METHODS
III. RESULTS AND RESULTS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0