메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Heo, Chan (Division of Animal Life Science, Konkuk University) Choi, Yun-Sang (Division of Animal Life Science, Konkuk University) Kim, Cheon-Jei (Division of Animal Life Science, Konkuk University) Paik, Hyun-Dong (Division of Animal Life Science, Konkuk University)
저널정보
한국축산식품학회 한국축산식품학회지 한국축산식품학회지 제29권 제3호
발행연도
2009.1
수록면
289 - 295 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The aim of this research was to develop predictive models for the growth of spoilage bacteria (total viable cells, Pseudomonas spp., and lactic acid bacteria) on frankfurters and to estimate the shelf-life of frankfurters under aerobic conditions at various storage temperatures (5, 15, and $25^{\circ}C$). The primary models were determined using the Baranyi model equation. The secondary models for maximum specific growth rate and lag time as functions of temperature were developed by the polynomial model equation. During 21 d of storage under various temperature conditions, lactic acid bacteria showed the longest lag time and the slowest growth rate among spoilage bacteria. The growth patterns of total viable cells and Pseudomonas spp. were similar each other. These data suggest that Pseudomonas spp. might be the dominant spoilage bacteria on frankfurters. As storage temperature increased, the growth rate of spoilage bacteria also increased and the lag time decreased. Furthermore, the shelf-life of frankfurters decreased from 7.0 to 4.3 and 1.9 (d) under increased temperature conditions. These results indicate that the most significant factor for spoilage bacteria growth is storage temperature. The values of $B_f$, $A_f$, RMSE, and $R^2$ indicate that these models were reliable for identifying the point of microbiological hazard for spoilage bacteria in frankfurters.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0