메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
여진희 (삼성전자 건강연구소) 최광민 (삼성전자 건강연구소)
저널정보
한국산업보건학회 (구 한국산업위생학회) 한국산업보건학회지 한국산업보건학회지 제26권 제3호
발행연도
2016.1
수록면
301 - 306 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: Direct-reading instrument(Photoionization detectors, PID) and quantitative analysis using active type air sampling (Gas chromatography-flame ionization detector, GC-FID) were tested to evaluate their ability to detect volatile organic compounds(VOCs) in a semiconductor manufacturing plant. Methods: The organic compounds used were acetone and ethanol which are normally used as cleaning solutions in the semiconductor manufacturing. The evaluation was based on the preparation of test solutions of known acetone and ethanol concentration in a chamber($600{\times}600{\times}1150mm$). Samples were prepared that would be equivalent to 5~100 ppm for acetone and 10~ 200 ppm ethanol. GC-FID and PID were evaluated simultaneously. Quantitative analysis was performed after sampling and the direct-reading instrument was checked using real-time data logging. Results: Positive correlations between PID and GC-FID were found for acetone and ethanol at 0.04~2.4% for acetone(TLV: 500 ppm) and 0.1~8.3% for ethanol(TLV: 1000 ppm). When the sampling time was 15 min, concentration of test solution was the most similar between measurement methods. However, the longer the sampling time, the less similar the results. PID and GC-FID had similar exposure patterns. Conclusions: The results indicate that PID and GC-FID have similar exposure pattern and positive correlation for detection of acetone and ethanol. Therefore, PID can be used for exposure monitoring for VOCs in the semiconductor manufacturing industry. This study has significance in that it validates measuring occupational exposure using a portable device.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0