메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
조승연 (닉스 테크) 최지은 (연세대학교 정보대학원) 이규현 (연세대학교 정보대학원) 김희웅 (연세대학교 정보대학원)
저널정보
한국경영정보학회 Information Systems Review Information Systems Review 제17권 제3호
발행연도
2015.1
수록면
95 - 111 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
추천시스템은 과거 구매행동을 통해 사용자가 향후 구매할 것이라 예상되는 제품을 자동으로 검색하여 제공하는 시스템이다. 이러한 추천시스템은 여러 전자상거래 업체에서 도입하고 있으며, 사용자의 편의성 및 수익에 긍정적인 영향을 미치고 있다. 하지만 사용자가 어떠한 기준을 가지고 제품을 평가하는지, 어떠한 요소가 구매 의사 결정에 영향을 미치는지는 반영할 수 없다는 한계가 있다. 이에 본 연구에서는 사용자가 직접 작성한 구매후기를 통해, 사용자 별 제품 평가요소를 활용할 수 있는 추천 모형 알고리즘을 개발하였다. 토픽 모델링을 활용하여 사용자들의 구매후기를 분석하였으며, 이러한 후기의 특성이 반영된 커널과 평가 점수가 반영된 커널 등을 함께 활용하여 다중 커널 학습 기반의 추천 모형을 개발하였다. 또한, 이러한 모형을 BestBuy 사례에 적용하여 검증하였다. 검증 결과, 기존 협업적 필터링 알고리즘보다 다중 커널 학습에 의한 추천 모형의 정확도가 우수하였고, 구매후기의 유사성을 반영하였기에, 사용자가 어떠한 요소를 평가하는지를 확인할 수 있었다. 또한, 기존 협업적 필터링 알고리즘보다 다양한 제품에 대한 추천이 가능함을 확인할 수 있었다. 본 연구는 토픽 모델링과 커널 학습 기반을 사용한 융합적인 추천모형으로서, 온라인 추천시스템의 새로운 방법을 제안한다.

목차

등록된 정보가 없습니다.

참고문헌 (47)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0