메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
중소기업융합학회 융합정보논문지 융합정보논문지 제9권 제6호
발행연도
2019.1
수록면
83 - 90 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
사람들은 자신의 더 나은 선택을 위하여 끊임없이 노력한다. 이러한 이유로 추천시스템이 개발되었으며, 1990년대 초반부터 계속해서 발전하고 있다. 그 중, 협업필터링 기법은 추천시스템 분야에서 우수한 성능을 보였으며, 기계학습이 등장하면서 기계학습을 이용한 추천시스템에 관한 연구가 활발히 진행되었다. 본 연구는 앙상블 방법 중에서 스태킹 모형을 사용하여 추천시스템을 구축하며, 실제 고객의 상품 구매 데이터를 활용하여 협업필터링과 기계학습 기반 스태킹 모형으로 추천시스템을 개발하였다. 제시한 모형의 추천 성능은 기존의 협업필터링과 기계학습 기반 추천시스템과 비교하여 모형의 우수성을 확인하며, 연구결과는 스태킹 모형을 이용한 추천시스템 모형의 추천 성능이 개선됨을 확인하였다. 향후 본 연구에서 제안한 모형은 개인이나 기업이 더 나은 선택을 하여 상품을 추천할 때 도움을 줄 것으로 기대한다.

목차

등록된 정보가 없습니다.

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0