메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이여송 (영남대학교 전자정보공학부) 김주곤 (영남대학교 전자정보공학부) 정현열 (영남대학교 전자정보공학부)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제23권 제3호
발행연도
2004.1
수록면
242 - 247 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
일반적인 핵심어 검출 시스템에서는 필러모델과 핵심어모델을 연결단어 인식 네트워크로 구성하여 핵심어 검출에 사용한다. 이것은 대량의 텍스트 데이터를 이용한 대어휘 연속 음성인식에서 구해지는 단어의 출현빈도의 언어모델을 핵심어 검출 시스템에서 효과적으로 구성할 수가 없는 어려움이 있기 때문이다. 이를 해결하기 위하여 본 논문에서는 의사 N-gram 언어모델을 이용한 핵심어 검출 시스템을 제안하고 핵심어와 필러모델의 출현빈도의 변화에 따른 핵심어 검출 성능을 조사하였다. 그 결과, 핵심어와 필러모델의 출현확률을 0.2:0.8의 비율에서 CA (Correctly Accept for Keyword: 핵심어를 제대로 인정한 경우)가 91.1%, CR (Correctly Reject for OOV: 비핵심어에 대해 제대로 거절한 경우)는 91.7%로써, 일반적인 연결단어인식 네트워크를 이용한 방법보다 제안된 방법이 CA-CR 평균 인식률의 에러감소율 (Error Reduction Rate)에서 14%향상되어 핵심어 검출에서의 언어모델 도입의 효과를 확인할 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0