메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김민제 (울산대학교 컴퓨터정보통신공학부) 이정철 (울산대학교 컴퓨터정보통신공학부)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제25권 제7호
발행연도
2006.1
수록면
319 - 324 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 화자독립 가변어휘 핵심어 검출기의 성능을 개선하기 위하여 두 가지의 새로운 비핵심어 모델링 방법을 제안한다. 첫째는 K-means 알고리즘 기반 monophone 군집화 방법을 개선하기 위해 monophone을 state단위로 결정트리를 기반으로 군집화하여 비핵심어를 모델링하는 방법이다. 둘째는 single state multiple mixture 방법을 개선하기 위해 음절단위 multi-state multiple mixture 방법으로 모델링하는 방법이다. 실험에서 ETRI 표준 한국어 공통음성 단어 DB를 이용하여 트라이폰 모델을 훈련하였고, 훈련에 사용하지 않은 음성데이터를 이용하여 핵심어 검출closed 테스트를 수행하였다. 그리고 사무실 환경에서 4명의 화자가 각각 100문장씩 발성한 400문장의 음성데이터를 이용하여 100단어 핵심어 검출 open 테스트를 수행하였다. 실험 결과 결정트리기반 상태 군집화 방법이 기존의 K-means 알고리듬 기반 monophone clustering 방법보다 핵심어 검출 성능이 28%/29%(closed/open test) 향상되었다 그리고 음절단위 multi-state multiple mixture 방법이 비핵심어 전체를 single state 모델로 구성하는 방법보다 핵심어 검출 성능이 22%/2%(closed/open test) 향상됨으로써 본 논문에서 제안한 두 가지 알고리듬이 우수한 결과를 나타내었다

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0