메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
오세진 (영남대학교 전자정보공학부) 황철준 (영남대학교 전자정보공학부) 김범국 (대구과학대학 정보전자통신계열) 정호열 (영남대학교 전자정보공학부) 정현열 (영남대학교 전자정보공학부)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제19권 제6호
발행연도
2000.1
수록면
62 - 70 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
일반적으로 통계적 언어모델의 확률을 추정하는 방법은 대량의 텍스트 데이터로부터 출현빈도가 높은 단어를 선택하여 사용하고 있다. 하지만 특정 태스크에서 적용할 언어모델의 경우 시간적, 비용적 측면을 고려할 때 대용량의 텍스트의 사용은 비효율적일 것이다. 본 논문에서는 특정 태스크에서 사용하기 위해 소량의 텍스트 데이터로부터 효율적인 언어모델을 작성하는 방법을 제안한다. 즉, 언어모델을 작성할 때 출현빈도가 낮은 단어의 빈도를 개선하기 위해 같은 문장을 반복하여 학습에 참가시키므로 단어의 발생확률을 좀 더 강건하게 하였으며 제안된 언어모델을 이용하여 3명이 발성한 항공편 예약관련 200문장에 대하여 연속음성인식 실험을 수행하였다. 인식실험 결과, 반복학습에 의해 작성한 언어모델을 이용한 경우가 반복학습 적용 전에 비하여 평균 20.4%의 인식률 향상을 보였다. 또한 기존의 문맥자유문법을 이용한 시스템과 비교하여 인식률이 평균 13.4% 향상되어 제안한 방법이 시스템에 유효함을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0