메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
황진숙 (건국대학교 의상텍스타일학부)
저널정보
한국의류학회 한국의류학회지 한국의류학회지 제27권 제7호
발행연도
2003.1
수록면
746 - 757 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The purpose of this study was to investigate the internet perceived risk segments in regard to clothing benefits sought, internet shopping attitude, and internet purchase intention. The subjects used for the study were 210 male and 338 female college students. The internet perceived risk consisted of size/defect risk, social psychological risk, privacy risk, delivery risk, and price risk. The clothing benefits sought had impression improvement, fashion, individuality, figure flaws compensation, and comfort factors. The results showed that consumers were segmented by four groups based on internet perceived risk factors : 1) privacy risk group, 2) size risk group. 3) low risk group, and 4) price/social psychological risk group. The four segmented groups differed in regard to clothing benefits sought, internet shopping attitude, and internet purchase intention. For example, in regard to clothing benefits sought, the price/social Psychological risk group sought fashion more than other groups. The low risk group considered figure flaws compensation benefit less important than other groups. Concerning internet shopping attitude, the low risk group had more favorable altitude toward trust, safety, diversity, exchange/return attributes of internet shopping than other groups. The privacy risk group had more favorable attitude toward convenience and price attributes of internet shopping. Regarding internet purchase intention, the low risk group had higher intention to purchase formal, casual, and sportswear. The size risk group had higher intention to purchase fashion accessories. Further group differences and implications of the results were discussed.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0