메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
안남성 (한전 전력연구원) 곽상만 (시스테믹) 유재국 (시스테믹스)
저널정보
한국시스템다이내믹스학회 한국시스템다이내믹스 연구 한국 시스템 다이내믹스 연구 제3권 제2호
발행연도
2002.1
수록면
49 - 68 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The intent of this study is to develop system dynamics model for assessment of organizational and human factors in nuclear power plant which can contribute to secure the nuclear safety. Previous studies are classified into two major approaches. One is engineering approach such as ergonomics and probability safety assessment(PSA). The other is social science approach such like sociology, organization theory and psychology. Both have contributed to find organization and human factors and to present guideline to lessen human error in NPP. But, since these methodologies assume that relationship among factors is independent they don't explain the interactions among factors or variables in NPP. To overcome these limits, we have developed system dynamics model which can show cause and effect among factors and quantify organizational and human factors. The model we developed is composed of 16 functions of job process in nuclear power, and shows interactions among various factors which affects employees' productivity and job quality. Handling variables such like degree of leadership, adjustment of number of employee, and workload in each department, users can simulate various situations in nuclear power plant in the organization side. Through simulation, user can get insight to improve safety in plants and to find managerial tools in the organization and human side. Analyzing pattern of variables, users can get knowledge of their organization structure, and understand stands of other departments or employees. Ultimately they can build learning organization to secure optimal safety in nuclear power plant.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0