메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김충영 (서울시립대 경영학부) 장남식 (서울시립대 경영학부) 김상욱 (메타비경영연구원)
저널정보
한국산학경영학회 산학경영연구 산학경영연구 제15권
발행연도
2002.1
수록면
79 - 97 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구에서는 고객 세분화를 위하여 고객프로필과 사이트 접속자료를 통합, 분석하는 분석적 CRM을 시도하였다. 실제 고객 데이터를 분석하여 고객의 특성과 기호, 방문행태 등을 이해할 수 있다면 이를 기반으로 고객 세분화(segmentation)가 가능할 것이다. 예를 들어 고객의 거주지, 재산정도, 교육수준, 연령 등 인적정보를 토대로 동일 사이트에 접속하는 고객의 공통점을 찾게 된다면 이들 고객에 접근할 수 있는 적절한 마케팅 미디어가 무엇인지, 어느 페이지에 홍보물을 게재하는 것이 효과적일 것인가 등을 결정하는 데 도움을 줄 수 있을 것이다. 한편 웹 기반 마이닝의 핵심은 웹으로 부터의 자료를 어떻게 하면 효율적으로 수집할 것인가, 또한 이렇게 수집된 자료를 다양한 (multiple) DB와 어떻게 통합하고 분석하여 필요한 정보를 추출할 것인가 일 것이다. 본 연구에서는 실제 인터넷 사업자의 사용자 그룹의 비율에 따라 구성된 패널을 활용하여 효율적인 자료수집 방안을 모색하였다. 패널 구성원에 대한 웹 데이터를 수집함으로써 신뢰성과 대표성을 확보하면서 분석대상 자료의 양을 적절한 수준으로 유지할 수 있었다. 또한 고객자료 분석에서는 OLAP과 데이터 마이닝 기법(의사결정나무)을 동시에 사용하여 그 분석 결과를 비교함으로써 각 기법의 결과를 상호 확인하고 보완할 수 있었다. 이 결과는 데이터 마이닝 기법에 의해서 발견된 패턴을 분석하고 확인하는 작업에서 OLAP이 유용하게 사용될 수 있다는 과거 연구의 주장을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0