메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국산업경영시스템학회 산업경영시스템학회지 산업경영시스템학회지 제42권 제4호
발행연도
2019.1
수록면
194 - 202 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Reliability analysis of the components frequently starts with the data that manufacturer provides. If enough failure data are collected from the field operations, the reliability should be recomputed and updated on the basis of the field failure data. However, when the failure time record for a component contains only a few observations, all statistical methodologies are limited. In this case, where the failure records for multiple number of identical components are available, a valid alternative is combining all the data from each component into one data set with enough sample size and utilizing the useful information in the censored data. The ROK Navy has been operating multiple Patrol Killer Guided missiles (PKGs) for several years. The Korea Multi-Function Control Console (KMFCC) is one of key components in PKG combat system. The maintenance record for the KMFCC contains less than ten failure observations and a censored datum. This paper proposes a Bayesian approach with a Dirichlet mixture model to estimate failure time density for KMFCC. Trends test for each component record indicated that null hypothesis, that failure occurrence is renewal process, is not rejected. Since the KMFCCs have been functioning under different operating environment, the failure time distribution may be a composition of a number of unknown distributions, i.e. a mixture distribution, rather than a single distribution. The Dirichlet mixture model was coded as probabilistic programming in Python using PyMC3. Then Markov Chain Monte Carlo (MCMC) sampling technique employed in PyMC3 probabilistically estimated the parameters’ posterior distribution through the Dirichlet mixture model. The simulation results revealed that the mixture models provide superior fits to the combined data set over single models.

목차

등록된 정보가 없습니다.

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0