메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국인체미용예술학회 한국인체미용예술학회지 한국인체미용예술학회지 제21권 제2호
발행연도
2020.1
수록면
295 - 307 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Gaya is one of the most iconic local cultures of Gyeongnam Province, Korea. Despite its significance in the history of the Three Kingdoms, the history of Gaya has long been marginalized and neglected due to mainstream historical focus on Goguryeo, Baekje, and Silla, absolute lack of literature, and massive loss of historical and cultural assets due to frequent invasions of neighboring countries such as Japan. The hairstyles in different periods are a cultural property and creative outcome that reflects the concerned period. The culture reflects the lifestyle of the time and is often the outcome that comes in a subjective and creative form. Precedent studies in Gyeongnam have mostly focused on accessories and clothing as part of cultural products and hardly on the hairstyles of women in Gaya Kingdom period despite its keen interest in Gaya culture and its traditional superiority as well as its multi-faceted efforts to promote and develop the Gaya’s culture globally. Against this backdrop, this study aims to analyze the literature and murals of the Three Kingdoms Period, the standard portrait of Heo, Gaya’s Empress, based on which the hairstyles of Gaya’s women belonging to the aristocrat class will be estimated to complete the work together with the production process. This will serve as a theoretical support and a step toward demonstrating the hairstyle of Gaya’s aristocrat woman, which has been relatively ignored and neglected. This study aims to replicate the hairstyle of Gaya’s aristocrat women based on the relics and murals of the Three Kingdoms Period, and the relics and standard portraits of Gaya Kingdom.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0