메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이수정 (경인교육대학교)
저널정보
한국컴퓨터교육학회 컴퓨터교육학회 논문지 컴퓨터교육학회논문지 제21권 제5호
발행연도
2018.9
수록면
61 - 68 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
협력 필터링은 다수의 상업용 추천 시스템에서 구현되어 온라인 사용자들에게 성공적으로 서비스되고 있는 핵심적 기술이다. 이 기술은 현 사용자와 유사한 평가이력을 가진 다른 사용자들로부터 항목을 추천하기 때문에, 유사도 척도는 시스템 성능에 매우 큰 영향을 미친다. 본 연구에서는 기존 유사도 측정방법의 문제점을 해결하고자 퍼지 논리에 입각하여 사용자 평가등급의 주관성 및 모호성과 사용자들의 평가 행태를 반영하는 새로운 유사도 척도를 제안한다. 성능 평가를 위한 다양한 실험을 실시하였고, 그 결과 제안 방법은 예측 정확도와 추천 정확도 면에서 우수한 성능 개선 효과를 보였다.

목차

요약
ABSTRACT
1. 서론
2. 관련 연구 분석
3. 제안 유사도 척도
4. 성능 측정 실험
5. 결론
참고문헌

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0