메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이진숙 (고려대학교) 문기범 (고려대학교) 한수연 (고려대학교) 이수강 (고려대학교) 권혜정 (고려대학교) 한재호 (고려대학교) 김규태 (고려대학교)
저널정보
한국교육공학회 교육공학연구 교육공학연구 제37권 제2호
발행연도
2021.1
수록면
267 - 307 (41page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구는 대학혁신을 위한 인공지능 기반의 적응형 학습인 AI 기반 교양 강의 추천 시스템을 래피드 프로토타입 모형에 기반하여 개발하고, 실제 교내 포털 시스템에 적용하여 이용 결과를 분석하는 것에 목적을 두었다. 해당 서비스는 2020년 7월 교내 포털 시스템에 적용하였다. 추천 기능에 이용된 알고리즘은 사용자 기반 협업 필터링과 수강 이력 기반 통계 알고리즘을 이용하였으며, 각 모델당 21개의 교양 강의를 추천하였다. 서비스 만족도 설문조사를 진행한 결과, 782명의 응답을 수집하였고 협업 필터링 알고리즘보다 통계 기반 알고리즘의 만족도가 유의미하게 높은 것을 확인하였다. 그러나 실제 사후 추적 조사 결과, 2020년 2학기 희망 강의로 등록된 강의 내역과 실제 수강 내역에서 추천된 강의를 분석했을 때 협업 필터링 알고리즘의 Recall@21이 각각 약 37%와 43%로 통계 기반 알고리즘의 결과인 18%와 14%에 비해 높은 것으로 나타났다. 또한, 학생들은 교양 강의를 선택할 때 흥미 및 관심사를 가장 우선순위로 고려하였으며, 강의 제목의 모호함 때문에 강의에 대한 키워드가 가장 필요한 정보라고 응답하였다. 더불어 설문 응답자들은 원하는 강의와 원하는 수업 방식을 추천 결과에 직접 반영하고자 하는 요구를 확인하였다. 본 연구가 국내 대학 교육 실정에 맞는 인공지능 기반의 맞춤형 강의 추천 시스템을 개발하고 학습자에게 맞춤형 교육 정보를 제공하고자 할 때 기초자료로 기여할 수 있기를 기대한다.

목차

등록된 정보가 없습니다.

참고문헌 (32)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0