메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
문현실 (국민대학교) 임진혁 (국민대학교 경영학부 빅데이터경영통계전공) 김도연 (국민대학교 경영학부 빅데이터경영통계전공) 조윤호 (국민대학교)
저널정보
한국지식경영학회 지식경영연구 지식경영연구 제21권 제3호
발행연도
2020.1
수록면
27 - 44 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
사용자의 정보 과부하 문제의 해결을 목표로 하는 추천 시스템은 개인의 선호를 추론하여 이에 부합하는 아이템을 필터링하여 제공한다. 추천 시스템 관련 기법 중 가장 성공적으로 알려져 있는 협업 필터링은 최근까지 다양한 성능 개선 시도가 이루어지고 있으며 여러 분야에 적용되고 있다. 본 연구에서는 이와 같은 협업 필터링의 성공에 기반하여 소비자의 구매 의사결정에 영향을 미칠 수 있는 시각 정보를 추천 시스템에 반영할 수 있는 VizNCS를 제안한다. 이를 위하여 먼저, 비정형 데이터인 시각 정보에서 특징을 추출하기 위해 합성곱 신경망을 사용하였다. 다음으로, 합성곱 신경망으로부터 도출된 이미지 특성 정보를 추천 시스템에 반영하기 위하여 기존의 딥러닝 기반의 추천 시스템 중 다른 정보로 확장이 용이한 NCF 기법을 응용하였다. 본 연구에서 제안한 VizNCS의 성능 비교 실험 결과 기본 NCF보다 더 높은 성능을 보였으며 카테고리별 성능 비교 실험을 통해 시각 정보에 영향을 받는 카테고리와 그렇지 않은 카테고리를 발견하였다. 결론적으로 본 연구에서 제안한 VizNCS는 시각정보를 개인화된 추천에 직접 활용함에 따라 시각 정보에 영향을 받는 소비자들의 구매의사결정 행태를 반영할 수 있어 추천 시스템 성능 향상에 기여하였다. 또한, 지금까지 활용이 미미했던 이미지 데이터로 추천 시스템의 원천 데이터 영역을 확장함에 따라 다양한 원천 데이터의 활용 방안을 제시하였다.

목차

등록된 정보가 없습니다.

참고문헌 (38)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0