메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국융합학회 한국융합학회논문지 한국융합학회논문지 제10권 제5호
발행연도
2019.1
수록면
35 - 42 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근 사물인터넷과 다양한 웨어러블 기기들이 등장하면서 인터넷 기술은 보다 편리하게 정보를 얻고 업무를 수행하는데 기여하고 있으나 인터넷이 다양한 부분에 이용되면서 공격에 노출되는 Attack Surface 지점이 증가하고 있으며 개인정보 획득, 위조, 사이버 테러 등 부당한 이익을 취하기 위한 목적의 네트워크 침입 시도 또한 증가하고 있다. 본 논문에서는 네트워크에서 발생하는 트래픽에서 비정상적인 행동을 분류하기 위한 희소클래스의 분류 성능을 개선하는 특징선택을 제안한다. UNSW-NB15 데이터셋은 다른 클래스에 비해 상대적으로 적은 인스턴스를 가지는 희소클래스 불균형 문제가 발생하며 이를 제거하기 위해 언더샘플링 방법을 사용한다. 학습 알고리즘으로 SVM, k-NN 및 decision tree를 사용하고 훈련과 검증을 통하여 탐지 정확도와 RMSE가 우수한 조합의 서브셋들을 추출한다. 서브셋들은 래퍼 기반의 실험을 통해 재현률 98%이상의 유효성을 입증하였으며 DT_PSO 방법이 가장 우수한 성능을 보였다.

목차

등록된 정보가 없습니다.

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0