메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
조윤정 (울산대학교) 김재영 (울산대학교) 김종면 (울산대학교)
저널정보
인문사회과학기술융합학회 예술인문사회 융합 멀티미디어 논문지 예술인문사회 융합 멀티미디어 논문지 제7권 제4호
발행연도
2017.4
수록면
551 - 559 (9page)
DOI
http://dx.doi.org/10.14257/AJMAHS.2017.04.33

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 베어링 고장진단 성능을 개선하기 위해 실시간 학습 방법을 제안한다. 기존 베어링 고장진단의 문제점은 학습되지 않은 상태에 대해 올바른 분류를 할 수 없다는 점이다. 제안한 4단계 실시간 학습 방법은 새로운 상태를 실시간으로 인지 및 학습하여 새로운 상태의 데이터를 올바르게 분류할 수 있다. 1단계에서는 학습 정보에서 각 클래스의 무게중심과 그 클래스 내 각 특징벡터 사이의 유클리디안 거리를 계산하여 각 클래스별로 거리의 최대값을 계산한다. 2단계에서는 새로 취득된 데이터의 특징벡터와 각 클래스의 무게중심 사이의 유클리디안 거리를 계산하고 각 클래스별 최대 허용 거리와 비교한다. 3단계에서는 새로 취득된 데이터들과 각 클래스 내 무게중심 사이의 거리가 각 클래스의 최대 허용 거리보다 모두 클 경우 새로운 상태의 데이터로 인지하고 새로운 상태 인지 횟수를 증가시킨다. 마지막 4단계에서는 새로운 상태 인지 회수가 10보다 클 경우 새로운 상태의 클래스를 생성하기 위해 새로운 상태로 인지된 10개의 데이터를 새로운 상태의 클래스로 지정하고 분류기를 재학습시킨다. 제안한 방법의 성능을 검증하기 위해 실제 베어링 결함 데이터를 사용하여 제안한 실시간 학습 방법의 효율성을 검증하였다.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0