메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국융합학회 한국융합학회논문지 한국융합학회논문지 제10권 제11호
발행연도
2019.1
수록면
1 - 7 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
네트워크 공격을 탐지하기 위하여 기계학습을 이용한 다양한 연구가 최근 급격히 증가하고 있다. 이러한 기계학습 방법은 많은 데이터에 의존적이며 연구를 위해 다양한 실험 데이터가 공개되어 사용되고 있다. 하지만 실험 데이터 및 실제 환경에서 수집되는 데이터는 class간의 수량이 불균형하다는 문제점을 가지고 있다. 본 연구에서는 기계 학습을 이용한 침입탐지시스템의 한계점 중 학습데이터의 class간 불균형으로 인한 분류 성능 저하를 해결하기 위한 방법을 제안한다. 이를 위해 네트워크 트래픽 데이터를 처리하고 seqGAN를 이용하여 부족한 데이터를 생성하였다. 제안된 방법은 NSL-KDD, UNSW-NB15 데이터 셋을 대상으로 Text-CNN을 이용하여 분류하는 테스트를 실행한 결과 정밀도가 향상되는 것을 확인할 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0