메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
채영훈 (과학기술연합대학원대학교) 정도헌 (한국과학기술정보연구원)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제17권 제1호
발행연도
2017.1
수록면
39 - 49 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
인터넷 기술이 발전함에 따라 온라인상의 데이터는 급격하게 증가하고 있고, 증가하는 데이터에 대해 점진적인 기계학습 기법을 통해 효율적으로 학습하기 위한 연구가 진행되고 있다. 온라인상의 문서는 대부분 게시일, 출판일과 같은 시계열적 정보를 포함하고 있고, 이를 분류에 반영한다면 효율적인 분류가 가능할 것이다. 본 연구에서는 웹 문서상에서 나타나는 어휘의 시계열적 변화를 분석하였고, 분석한 시계열 정보를 기반으로 데이터 집합을 분할하여 효율적인 분류 학습 기법을 제안한다. 실험 및 검증을 위해 온라인상의 뉴스 기사 100만 건을 시계열 정보를 포함하여 수집하였다. 수집된 데이터를 바탕으로 데이터 집합을 분할하여 Naïve Bayes 및 SVM 분류기를 사용하여 실험을 진행하였고, 각 모델에서 전체 데이터 집합 학습 대비 최대 2.02% 포인트, 2.32% 포인트의 성능 향상을 확인하였다. 본 연구를 통해 시계열적 어휘의 변화를 분류에 반영하여 분류의 성능을 향상시킬 수 있음을 확인하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련연구 및 연구배경
Ⅲ. 데이터 집합 선정 모델
Ⅳ. 성능평가
Ⅴ. 결론
참고문헌

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-310-002187082