메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hyeonho Jeong (Chungnam National University) Hyosung Hong (Chungnam National University) Gyuha Park (Chungnam National University) Mooncheol Won (Chungnam National University) Mingyu Kim (FM Electronics) Hoyeong Yu (FM Electronics)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.13 No.3
발행연도
2019.9
수록면
99 - 106 (8page)
DOI
10.5626/JCSE.2019.13.3.99

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, we have developed a point cloud segmentation algorithm for a collision avoidance system between cranes and other objects in construction yards. We used the Dynamic Graph CNN (DGCNN) algorithm to segment the point cloud of the entire yard into crane parts and backgrounds. The point cloud data were obtained from several LIDAR sensors attached to the crane. All points were grouped into specific core clusters using the DBSCAN algorithm. The core clusters were used to train the DGCNN after labeling with corresponding part names. This network classified the point cloud into crane types and their part names. Experimental results show that the crane part segmentation performance of the suggested algorithm is accurate enough to be used for collision avoidance system. It is possible to estimate the pose of a crane by comparing the segmented point clouds with those of the CAD model.

목차

Abstract
I. INTRODUCTION
II. RELATED WORK
III. LIDAR-BASED CRANE COLLISION AVOIDANCE SYSTEM
IV. CRANE PART SEGMENTATION ALGORITHM
V. EXPERIMENT
VI. CONCLUSION
REFERENCES

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0