메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제20권 제6호
발행연도
2018.1
수록면
2,917 - 2,932 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
우리나라 식생활에 밀접한 관련을 가지고 있는 채소인 양파의 수급불균형 해결을 위한 생산량 예측 모형 개발의 노력이 많은 연구를 통해 이뤄지고 있다. 하지만 양파의 수확기와 저장 가능성을 고려해 봤을 때 생산량 예측만으로는 수급불균형 해결이 어렵다. 따라서 본 논문에서는 양파의 생산량 정보와 가격의 다양한 요인이 포함되어 있으며 일상에서 쉽게 접할 수 있는 인터넷 기사를 이용하여 가격 예측을 위한 감성사전을 구축하고자 한다. 양파 기사는 2012년부터 2016년까지의 데이터를 사용하였고 도매시장 가격을 통한 문서구분을 통해 4가지 TF-IDF를 비교하여 적합한 TF-IDF를 사용하였다. 분석을 위하여 분할적 군집분석 중 k-means 군집, 밀도기반군집(DBSCAN; density based spatial cluster applications with noise), 가우시안혼합분포군집(GMM; Gaussian mixture model) 군집을 통하여 가격에 대한 긍정/부정 단어를 구분한 결과 GMM 군집이 의미 있는 긍정, 부정, 무정의 3개의 사전으로 구성되었다. 구축된 사전의 합리성을 비교하기 위하여 가격 상승 기사와 가격 하락 기사의 분류에 로지스틱 회귀분석을 적용한 결과 85.7%의 정확도로 구축된 사전의 합리성을 확인할 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0