메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제20권 제4호
발행연도
2018.1
수록면
1,769 - 1,780 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
연속형 변수와 범주형 변수가 함께 존재하는 혼합형 데이터의 군집분석에서 연속형 변수의 경우에 유클리디안 거리처럼 자연스럽게 거리를 정의할 수 있지만, 범주형 변수, 특히 순서가 없는 명목형 변수의 경우에 개체 간 거리 측정이 모호하여 종종 배제되었다. 개체 간 거리를 기반으로 하는 군집분석 방법에서 개체 간 거리의 정의는 매우 핵심적인 문제이므로 명목형 변수의 합리적 정의는 신뢰할 수 있는 군집분석 위해서는 중요한 요소이다. 따라서 두 가지 형태의 변수가 함께 존재하는 경우에 범주형 변수의 거리 측정을 위해 모형화를 위해 종종 이용되는 가변수 변환 방법, 범주의 일치 여부에 따라 0-1로 거리를 부여하는 Gower의 방법, 그리고 변수의 수준 개수 정보를 활용하는 Eskin의 방법 도입하여 혼합형 데이터에 거리를 측정할 수 있도록 군집 분석 결과를 비교하였다. 거리 정의 방법에 의존하지 않는 공정한 비교를 위해 세 가지 평가 측도를 이용하였다. 그 결과, 군집의 퍼짐 정도 및 군집 별 개체의 불균형한 상황에서 Eskin의 방법의 성능이 우수하였다. 또한, 군집의 응집성, 재현성, 군집의 개수 정확도 측면에서 Eskin의 방법이 더 나은 성능을 보였다.

목차

등록된 정보가 없습니다.

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0