메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이주성 (고려대학교) 안호명 (오산대학교)
저널정보
한국정보전자통신기술학회 한국정보전자통신기술학회 논문지 한국정보전자통신기술학회 논문지 제12권 제3호
발행연도
2019.6
수록면
186 - 191 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 고속 특징추출 알고리즘의 구현 방법을 제안한다. 제안하는 방법은 블록 유형 분류 알고리즘을 기반으로, 블록 유형 분류 알고리즘 적용 시, 영상 특징 정보가 발생하지 않는 스무스 블록에서 연산을 생략하여 영상 특징 검출에 필요한 연산시간을 감소시킬 수 있다. 200장의 표준 테스트 이미지를 활용해 매크로 블록의 크기를 64×64로 나누어 스무스 블록의 발생 빈도를 측정한 결과 전체의 29.5%만큼 발생하는 것을 정량적으로 확인했다. 이 의미는 다양한 영상 정보를 포함하고 있는 표준 테스트 이미지 내에서는 29.5%에 해당하는 만큼 연산의 복잡도를 감소시킬 수 있다는 의미를 나타낸다. 제안된 방법을 케니 윤곽선 검출 알고리즘에 적용하면 이차원 미분 필터, 그라디언트 크기 및 방향 연산, 비최대 억제, 적응형 임계값 연산, 히스테리시스 임계 처리와 같은 총 다섯 단계의 영상처리에 필요한 지연시간을 완전히 제거할 수 있다. 이와 같은 방법으로 다양한 특징 검출 알고리즘에 블록 유형 구분 알고리즘을 적용해, 연산에 필요한 시간을 감소할 수 있을 것을 기대한다.

목차

요약
Abstract
1. 서론
2. 기존 연구
3. 본론
4. 실험 결과
5. 결론
REFERENCES

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-569-000916813