메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최용화 (고려대학교) 김아람 (고려대학교) 전민지 (고려대학교) 김선규 (고려대학교) 한규만 (고려대학교) 원은수 (고려대학교) 함병주 (고려대학교) 강재우 (고려대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.46 No.1
발행연도
2019.1
수록면
71 - 76 (6page)
DOI
10.5626/JOK.2019.46.1.71

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
우울증은 현대 사회에서 가장 흔한 정신질환 중 하나로, 반복되는 재발에 따른 만성화로 인해 사회적인 부담을 증가시킨다. 그러나 다양한 요인들이 복합적으로 관여하는 질병이기 때문에 여러 요인을 효율적으로 고려할 수 있는 기계학습 모델이 필요하다. 본 논문에서는 기본 정보, MRI, 유전자, 인지 검사의 4가지 멀티 모달 데이터를 이용해 우울증 여부를 진단하고 항우울제 반응의 정도를 예측할 수 있는 모델을 제안하여 우울증 진단의 경우 AUROC 점수 0.923, 항우울제 반응성 예측의 경우 MSE 0.08의 정확도를 얻었다. 그리고 제안한 모델의 결과를 정량적으로 분석하여 환자의 데이터를 추가할수록 정확한 진단 및 약물 반응성 예측이 가능함을 확인하고, 정성적으로 분석하여 우울증에 관해 기존에 알려진 주요 요인을 찾는 것뿐 아니라 새로운 가설을 제시하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 실험
4. 실험 결과 및 분석
5. 결론
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0