메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국컴퓨터교육학회 한국컴퓨터교육학회 학술발표대회논문집 한국컴퓨터교육학회 2017년도 하계학술발표논문지 제21권 제2호
발행연도
2017.8
수록면
41 - 45 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 컨볼루션 신경망 네트워크(CNN:Convolution Neural Network)을 기반으로 단어의 의 미와 순서를 고려하는 문서 색인 방법을 이용하여 한글 문서 분류 방법을 제안한다. 먼저 문서를 형태 소 분석하여 어절 단위로 분리 한 후, 불용어를 처리 하고, 문서의 단어 의미를 고려하는 문서 표현하고, 문서의 단어 순서까지 고려하여 CNN의 입력으로 사용하였다. 실험결과 CNN 분류기를 기반으로 본 논문에서 제안하는 문서 색인 방법은 TF-IDF를 이용하는 방법보다 4.2%, Word2vec만 단독으로 사 용하는 것보다 1.4%의 성능 상승을 이루었다. 이러한 결과를 통해 본 논문에서 제안하는 방법이 문서 범주화 데이터 셋에서 문서 분류 성능향상에 영향을 미친다는 것을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-037-003285223