메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제27권 제4호
발행연도
2016.8
수록면
993 - 1,000 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
반응 값이 없는 자료를 지도학습 (supervised learning)에 사용하는 준지도 학습 (semi-supervised learning)은 분류에 더 많은 관심을 갖는다. 본 연구는 준지도학습을 회귀분석에 적용하는 준지도 회귀함수 추정법을 제안한다. 제안된 방법은 기존의 방법과 형태는 같지만 반응 값이 있는 자료와 없는 자료의 주변분포를 다르게 가정하고, 서로 다른 평활계수를 사용하는 등 좀 더 일반 화된 형태를 가진다. 제안된 추정법의 점근분포를 계산하고 점근평균제곱오차를 최소화하는 최적의 평활계수가 가지는 조건을 찾는다. 설명변수의 주변분포에 대한 추정이 잘 이루이지고, 반응 값이 있는 자료와 없는 자료의 크기에 대한 조건을 적절하게 통제할 수 있고, 그리고 평활계수가 적절하게 선택될 수 있다면 라벨없는 자료가 회귀분석에서도 도움을 줄 수 있음을 보인다. 그리고 준지도 분류에 서 사용하는 것처럼 반응 값이 없는 자료의 초기추정은 작은 값을 가지는 평활계수를 사용하여 과적합 (overfitting) 되도록 하는 것이 좋음을 증명한다.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001378278