메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
HyeonMin Kwak (Konkuk University) YongHo Jeong (Mustree) ChanYeong Kim (Konkuk University) HeeJae Kwon (Konkuk University) Hyun Kwon (Korea Military Academy) SungHwan Kim (Konkuk University)
저널정보
계명대학교 자연과학연구소 Quantitative Bio-Science Quantitative Bio-Science Vol.42 No.2
발행연도
2023.11
수록면
123 - 132 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Semi-supervised learning utilizing both labeled and unlabeled data has recently made significant progress; however, while semi-supervised image classification research has been actively conducted and solved many problems, semisupervised semantic segmentation research still has some problems that need to be solved. In this work, semi-supervised semantic segmentation, which requires more annotation work than other tasks such as classification, was investigated because labels are required on a pixel-by-pixel basis. Consistency regularization based on input image perturbation, feature perturbation, and network perturbation in the semi-supervised learning approach showed significant performance improvement. In particular, consistency regularization through network perturbation showed excellent performance in semi-supervised semantic segmentation. However, important challenges remain. Due to pseudo-label bias, inaccurate pseudo-labels for unlabeled data can negatively affect training, which causes more serious problems in semi supervised segmentation tasks. This study mitigates the pseudo-label bias issue by expanding the network perturbation-based method, which has shown excellent results, through a simple ensemble strategy. In addition, this simple method shows improved prediction performance. The results of this study outperform previous state-of-the-art methods and achieve state-of-the-art semi-supervised segmentation performance. The proposed method can be practically applied to the handson data science domain that hardly obtains sufficient class-labels (e.g. medicine, manufacturing, etc.).

목차

ABSTRACT
1. Introduction
2. Related Work
3. Methods
4. Experiments
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088493283