메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제26권 제5호
발행연도
2015.10
수록면
1,061 - 1,069 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근 교통 분야에서 발생하는 교통 빅데이터 (교통카드 데이터, ATMS 데이터 등)의 분석결과를교통 정책에 활용하는 사례가 늘어나고 있는 추세이다. 또한 교통 데이터 분석 기법을 기존의 단순 빈도 분석 기법에서 다양한 데이터 마이닝 기법으로 확장하여 교통 데이터 속에 숨어있는 의미를 파악하려는 연구도 진행되고 있다. 본 연구에서는 교통카드 데이터에 대하여 토픽모델링 기법 중의 하나인 LDA (Latent Dirichlet Allocation) 기법을 적용하여 청주시 버스 승객들의 이동패턴을 분석한다. 이를 위해 교통카드 데이터의 하차 결측치를 추정하고, LDA 기법을 적용하여 이동패턴을 추출하였다. 또한 LDA 분석으로 도출된 값을 측정값으로 하여 다차원적 분석을 함으로써 청주시 버스 승객들의 이동패턴 특징을 파악할 수 있다. 분석 결과, 청주시의 경우 크게 1) 시외지역에서 터미널을 이용해 청주시에서 유입되는 패턴, 2) 주거지역에서 상업지역으로 이동하는 패턴, 3) 청주 인근 학교에서 상업 지역 (청주 중심가)로 이동하는 패턴을 발견할 수 있었다. 이동패턴은 도시 계획, 대중교통서비스 향상, 버스 노선 신설 등 다양한 교통정책의 수립에 활용될 수 있을 것으로 기대된다.

목차

등록된 정보가 없습니다.

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001376916