메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유은순 (단국대학교) 최건희 (단국대학교) 김승훈 (단국대학교)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제20권 제2호
발행연도
2015.2
수록면
121 - 129 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
도서 상품에 대한 정보량이 폭증하면서 고객이 도서 선택에 어려움을 겪는 상황이 발생하고 있다. 이에 따라 고객에게 적합한 도서 정보를 제공하여 구매를 유도하는 도서 추천시스템의 중요성이 커지고 있다. 하지만 도서의 서지정보나 사용자 정보 등을 이용한 기존의 추천시스템은 추천 결과의 신뢰도에 문제를 드러내고 있기 때문에 도서 본문 텍스트의 의미적 정보를 추천시스템에 반영하는 것이 필요하다. 따라서 본 논문은 이에 대한 선행연구로 TF-IDF기법과 소설의 외형적 구조를 이용한 소설 텍스트의 주제어 추출 방법을 제안하였다. 이를 위해 100권의 소설텍스트를 수집하고 각각의 소설을 머리말, 대화문, 비대화문, 맺음말의 4개의 구조로 분리한 후 TF-IDF 가중치를 계산하였다. 실험결과 본문 텍스트만을 이용했을 때 보다 머리말과 맺음말을 포함하고 대화문에 가중치를 높게 부여하였을 때 주제어의 추출 정확도가 42.1%의 성능 향상을 보였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 소설 구조를 반영한 개선된 TF-IDF 기반의 주제어 추출 방법
Ⅳ. 실험 및 평가
Ⅴ. 결론 및 향후 연구
REFERENCES

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-325-001889735