메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제11권 제1호
발행연도
2000.6
수록면
19 - 30 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
정보통신기술의 비약적인 발전은 온라인으로 생성되는 전자문서의 양을 폭발적으로 증가시키고 있다. 따라서 수동으로 문서를 분류하던 종래의 방법 대신 문서의 자동분류 기술 개발이 특별히 요구되고 있다. 본 논문에서는 베이지안 학습 기법을 이용하여 문서를 자동으로 분류하는 방법을 연구하고, 20개의 유즈넷 뉴스그룹 문서들을 분류하도록 시험하였다. 사용한 알고리즘은 Naive Bayes Classifier이며, 구현한 시스템을 이용해 유즈넷 문서를 대상으로 자동분류를 실험한 결과 분류의 정확률이 약77%로 나타났다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001389602