메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제12권 제2호
발행연도
2001.12
수록면
11 - 25 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
자료들 사이에 존재하는 관계, 패턴, 규칙 등을 찾아내서 모형화 하는 통계적 인 분류기법은 여러 가지가 있다. 그러나 우리가 얻게 되는 지식은 어떤 일련의 분류규칙에 의해서가 아닌 관찰과 학습을 통한 훈련으로부터 얻게 된다. 본 베이지안 학습은 모든 형태의 불확실성을 표현하는 확률로써 우리의 믿음의 정도를 표현하는 것으로 해석될 수 있으며, 확실한 결과가 알려짐에 따라 확률이론 법칙을 사용하여 이러한 확률들을 갱신한다. 또한 신경망 모형은 이미 알고 있는 속성들에 근거하여 아직 알지 못하는 집단이나 특질들을 예측하게 해준다. 본 논문에서는 이러한 두 가지 방법을 결합한 베이지안 신경망과 기존의 CHAID, CART, QUBST 분류 알고리즘에 있어서 각각 오분류율을 비교 연구하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001390041