메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Wei Sun (North China Electric Power University) Jingyi Sun (North China Electric Power University)
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제22권 제3호
발행연도
2017.9
수록면
302 - 311 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Nowadays, with the burgeoning development of economy, CO<SUB>2</SUB> emissions increase rapidly in China. It has become a common concern to seek effective methods to forecast CO<SUB>2</SUB> emissions and put forward the targeted reduction measures. This paper proposes a novel hybrid model combined principal component analysis (PCA) with regularized extreme learning machine (RELM) to make CO<SUB>2</SUB> emissions prediction based on the data from 1978 to 2014 in China. First eleven variables are selected on the basis of Pearson coefficient test. Partial autocorrelation function (PACF) is utilized to determine the lag phases of historical CO<SUB>2</SUB> emissions so as to improve the rationality of input selection. Then PCA is employed to reduce the dimensionality of the influential factors. Finally RELM is applied to forecast CO<SUB>2</SUB> emissions. According to the modeling results, the proposed model outperforms a single RELM model, extreme learning machine (ELM), back propagation neural network (BPNN), GM(1,1) and Logistic model in terms of errors. Moreover, it can be clearly seen that ELM-based approaches save more computing time than BPNN. Therefore the developed model is a promising technique in terms of forecasting accuracy and computing efficiency for CO<SUB>2</SUB> emission prediction.

목차

ABSTRACT
1. Introduction
2. Methodology
3. Approaches of PC-RELM Model
4. Input Selection
5. Experiment of CO2 Emission Prediction in China Based on RELM Model
6. Conclusions
References

참고문헌 (48)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-539-001242385