메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김재호 (수원대학교) 김장영 (수원대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제26권 제1호
발행연도
2022.1
수록면
58 - 63 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
코로나19의 일일 확진자 수는 천명 후반대에서 2천명대를 유지하고 있으며, 백신접종률이 증가함에도 불구하고 확진자수가 쉽게 줄어들지 않는 상황이다. 변이바이러스는 계속해서 등장하고, 현재는 뮤 변이 바이러스까지 국내에 유입되었다. 본 논문은 코로나 예방전략을 위해 SARIMA 모델을 통해 코로나19 국내 확진자 수를 예측한다. ADF Test와 KPSS Test를 통해 데이터에 추세와 계절성이 있음을 확인한다. SARIMA(p,d,q)(P,D,Q,S)의 p, d, q, P, D, Q의 값은 모형 차수결정 정리로 파라미터를 추출한다. ACF와 PACF를 통해 p, q 파라미터를 추론한다. 차분, 로그변환, 계절성제거 등을 통해 데이터를 정상성 형태로 변환하고, 도식화 하여 파라미터를 도출하고, 계절성이 있다면 S를 정하고, SARIMA P,D,Q를 정하고, 계절성을 제외한 차수에 대해 ACF와 PACF를 보고 ARIMA p,d,q를 정한다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 기존연구
Ⅲ. 분석 알고리즘
Ⅳ. 실험결과 및 분석
Ⅴ. 결론 및 향후연구
REFERENCES

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0