메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Weibiao Qiao (Yanshan University) Qianli Ma (Yanshan University) Luyao Shi (Yanshan University) Haihong Xi (China Petrochemical Corporation) Xinjun Yang (Yanshan University) Nan Huang (Heibei University of Environmental Engineering) Yuqin Wang (PipeChina North Pipeline Company)
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제30권 제4호
발행연도
2025.8
수록면
103 - 115 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Coal, oil, and natural gas are the main three fossil energy that produce carbon. Among them, which is the main contributor to carbon emissions is rarely studied. In this work, the average contribution rate of carbon emissions is predicted based on an innovative two-stage model combining the optimal layers of wavelet’s orders with long short-term memory optimized by an improved sparrow search algorithm. The experimental results demonstrate that using wavelet for preprocessing can achieve better prediction results, compared to some other preprocessing methods, and the prediction results of one-step prediction are better than those of multi-step prediction. In addition, the six prediction error indicators used in this study are reasonable, and using the average prediction error evaluation indicator is more reasonable. The conclusion can be reached that the order of average contribution rate of carbon emissions from high to low is natural gas, petroleum, and coal and their proportion is 46.62%, 34.90%, and 18.48%, therefore, in the short future, natural gas will be the main source of carbon emissions in the US.

목차

ABSTRACT
1. Introduction
2. Methodologies
3. Applications
4. Results
5. Discussions Related to This Study
6. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092320065