메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최원준 (한국과학기술정보연구원) 설재욱 (한국과학기술정보연구원) 정희석 (한국과학기술정보연구원) 윤화묵 (한국과학기술정보연구원)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제18권 제8호
발행연도
2018.8
수록면
178 - 186 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
학술정보 성과물을 서비스하기 위하여 논문 단위의 주제 분류는 필수가 된다. 하지만 현재까지 저널 단위의 주제 분류가 되어 있으며 기사 단위의 주제 분류가 서비스되는 곳은 많지 않다. 국내 성과물 중에서 학술 논문의 경우 주제 분류가 있으면 좀 더 큰 영역의 서비스를 담당할 수 있고 범위를 정해서 서비스 할 수 있기 때문에 무엇보다 중요한 정보가 된다. 하지만, 분야 별 주제를 분류하는 문제는 다양한 분야의 전문가의 손이 필요하고 정확도를 높이기 위해서 다양한 방법의 검증이 필요하다. 본 논문에서는 정답이 알려져 있지 않은 상태에서의 정답을 찾는 비지도 학습 알고리즘을 활용해서 주제 분류를 시도해 보고 연관도와 복잡도를 활용해서 주제 분류 알고리즘의 결과를 비교해 보고자 한다. 비지도 학습 알고리즘은 주제 분류 방법으로 잘 알려진 Hierarchical Dirichlet Precess(HDP). Latent Dirichlet Allocation(LDA), Latent Semantic Indexing(LSI) 알고리즘을 활용하여 성능을 분석해 보았다.

목차

요약
Abstract
I. 서론
II. 선행 연구
III. 주제 분류 알고리즘 특징 및 학습 진행
IV. 결론
참고문헌

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-310-003415605