메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Shinya Ueda (Akita Prefectural University) Hirokazu Madokoro (Akita Prefectural University) Kazuhito Sato (Akita Prefectural University) Nobuhiro Shimoi (Akita Prefectural University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2016
발행연도
2016.10
수록면
7 - 12 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study was undertaken to create an indoor environmental map using a monocular camera based on structure from motion (SfM). Numerous methods on simultaneous localization and mapping (SLAM) have been proposed for 3D map construction used for various types of mobile robots. We used MonoSLAM proposed by Davidson et al., which is a fundamental method using extended Kalman filters (EKFs) for feature tracking and updating with camera position estimation. For this study, we developed our original micro air vehicle (MAV) prototype to obtain time-series images in a wide-range of indoor environments. The MAV prototype has four monocular cameras to actualize rapid omnidirectional sensing and has computer systems for online vision processing. We applied the method to a benchmark dataset and our original dataset, which was obtained using a single monocular camera. Using the benchmark dataset, we confirmed the appearance tendencies and their meaning of three color patches: red, blue, and yellow patches that respectively correspond to correct tracking, failure tracking, and temporary waiting local features. The experimentally obtained results obtained using our dataset reveal detection of numerous yellow patches, a few blue patches, and a few red patches. Moreover, we obtained 3D trajectories of a camera on the MAV as 3D maps.

목차

Abstract
1. INTRODUCTION
2. RELATED STUDIES
3. MAV ASSEMBLY
4. MONOCULAR SLAM
5. EVALUATION EXPERIMENT
6. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-003-001867907