메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Young Sung Cho (DongYang Mirae University) Song Chul Moon (Namseoul University)
저널정보
한국데이터전략학회 Journal of Information Technology Applications & Management Journal of Information Technology Applications & Management Vol.23 No.1
발행연도
2016.3
수록면
33 - 43 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Along with the spread of digital music and recent growth in the digital music industry, the demands for music recommender are increasing. These days, listeners have increasingly preferred to digital real-time streamlining and downloading to listen to music because it is convenient and affordable for the listeners to do that. We use Bayesian learning through weight of listener’s prefered music site such as Melon, Billboard, Bugs Music, Soribada, and Gini. We reflect most popular current songs across all genres and styles for music recommender system using user profile. It is necessary for us to make the task of preprocessing of clustering the preference with weight of listener’s preferred music site with popular music charts. We evaluated the proposed system on the data set of music sites to measure its performance. We reported some of the experimental result, which is better performance than the previous system.

목차

Abstract
1. Introduction
2. Related works
3. Our proposal for a Music Recommender System
4. The Environment of Implementation and Experiment and Evaluation
5. Conclusions
References

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-005-002786736