메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
송지현 (성균관대학교) 김정호 (성균관대학교) 이은석 (성균관대학교)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회 학술발표논문집 2017년 한국컴퓨터정보학회 동계학술대회 논문집 제25권 제1호
발행연도
2017.1
수록면
151 - 154 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
소프트웨어의 개발과정 중 결함을 제거하는 작업인 디버깅을 위해서는 가장 먼저 그 결함의 정확한 위치를 찾아야한다. 이 작업은 많은 시간이 소요되며, 이 시간을 단축시키기 위한 결함 위치 식별 기법들이 소개되었다. 많은 기법들 중 프로그램 커버리지 정보를 학습하여 규칙을 분석하는 인공신경망 기반 선행 연구가 있다. 이를 기반으로 본 논문에서는 문장들 간의 관계를 추가적으로 파악하여 학습 데이터로 사용하는 기법을 제안한다. 특정 문장이 항상 지나는 테스트케이스들 중 나머지 다른 문장들이 지나는 테스트케이스의 비율을 통해 문장들 간의 관계를 나타낸다. 해당 비율을 계산하기 위해 조건부 확률인 베이지안 확률을 사용한다. 베이지안 확률을 통해 얻은 문장들의 관계에 따라 인공신경망 내에서 의심도를 결정하는 웨이트(weight)가 기존 기법과는 다르게 학습된다. 이 차이는 문장들의 의심도를 조정하며, 결과적으로 다중 결함 위치 식별의 정확도를 향상시킨다. 본 논문에서 제안한 기법을 이용하여 실험한 결과, Tarantula 대비 평균 39.8%, 기존 역전파 인공신경망(BPNN) 기반 기법 대비 평균 60.5%의 정확도 향상이 있었음을 확인할 수 있다.

목차

요약
I. Introduction
II. Preliminaries
Ⅲ. The Proposed Scheme
Ⅳ. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-004-001970617