메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hakjae Lee (Korea University) Jaehee Chun (Korea University) Kisung Lee (Korea University) Kyeong Min Kim (Korea Institute of Radiological & Medical Sciences)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.4 No.5
발행연도
2015.10
수록면
311 - 317 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The aim of this study is to develop a 3D registration algorithm for positron emission tomography/computed tomography (PET/CT) and magnetic resonance (MR) images acquired from independent PET/CT and MR imaging systems. Combined PET/CT images provide anatomic and functional information, and MR images have high resolution for soft tissue. With the registration technique, the strengths of each modality image can be combined to achieve higher performance in diagnosis and radiotherapy planning. The proposed method consists of two stages: normalized mutual information (NMI)-based global matching and independent component analysis (ICA)-based refinement. In global matching, the field of view of the CT and MR images are adjusted to the same size in the preprocessing step. Then, the target image is geometrically transformed, and the similarities between the two images are measured with NMI. The optimization step updates the transformation parameters to efficiently find the best matched parameter set. In the refinement stage, ICA planes from the windowed image slices are extracted and the similarity between the images is measured to determine the transformation parameters of the control points. B-spline–based freeform deformation is performed for the geometric transformation. The results show good agreement between PET/CT and MR images.

목차

Abstract
1. Introduction
2. MATERIALS AND METHODS
3. EXPERIMENTAL RESULTS
4. CONCLUSION
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-002082456