메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Chika Tanaka (Kyushu Institute of Technology) Tohru Kamiya (Kyushu Institute of Technology) Takatoshi Aoki (University of Occupational and Environmental Health)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2020
발행연도
2020.10
수록면
411 - 414 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In recent years, the number of lung cancer deaths has been increasing. In Japan, CT (Computed Tomography) equipment is used for its visual screening. However, there is a problem that seeing huge number of images taken by CT is a burden on the doctor. To overcome this problem, the CAD (Computer Aided Diagnosis) system is introduced on medical fields. In CT screening, LDCT (Low Dose Computed Tomography) screening is desirable considering radiation exposure. However, the image quality which is caused the lower the dose is another problem on the screening. A CAD system that enables accurate diagnosis even at low doses is needed. Therefore, in this paper, we propose a registration method for generating temporal subtraction images that can be applied to low-quality chest LDCT images. Our approach consists of two major components. Firstly, global matching based on the center of gravity is performed on the preprocessed images, and the region of interest (ROI) is set. Secondly, local matching by free-form deformation (FFD) based on B-Spline is performed on the ROI as final registration. In this paper, we apply our proposed method to LDCT images of 6 cases, and reduce 57.29% in the calculation time, 26.1% in the half value width, and 29.6% in the sum of histogram of temporal subtraction images comparing with the conventional method.

목차

Abstract
1. INTRODUCTION
2. METHODS
3. EXPERIMENT
4. DISCUSSION AND CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-001570291