메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유재현 (서울대학교) 김현진 (서울대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제21권 제6호
발행연도
2015.6
수록면
565 - 570 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Supervised machine learning has become popular in discovering context descriptions from sensor data. However, collecting a large amount of labeled training data in order to guarantee good performance requires a great deal of expense and time. For this reason, semi-supervised learning has recently been developed due to its superior performance despite using only a small number of labeled data. In the existing semi-supervised learning algorithms, unlabeled data are used to build a graph Laplacian in order to represent an intrinsic data geometry. In this paper, we represent the unlabeled data as the spatial-temporal dataset by considering smoothly moving objects over time and space. The developed algorithm is evaluated for position estimation of a smartphone-based robot. In comparison with other state-of-art semi-supervised learning, our algorithm performs more accurate location estimates.

목차

Abstract
Ⅰ. 서론
Ⅱ. 준 지도식 학습기법 개요
Ⅲ. Laplacian Embedded Regularized Least Square (LapERLS)
Ⅳ. Time series LapERLS
Ⅴ. 와이파이 신호를 이용한 위치 추정
Ⅵ. 파라미터 튜닝
Ⅶ. 실험 결과
Ⅷ. 결론
REFERENCES

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001521296