메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
이윤지 (중앙대학교) 유승욱 (중앙대학교) 장수진 (중앙대학교) 김영빈 (중앙대학교)
저널정보
대한전자공학회 대한전자공학회 학술대회 2024년도 대한전자공학회 하계학술대회 논문집
발행연도
2024.6
수록면
3,441 - 3,445 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Deep learning based medical image segmentation requires high quality pixel-level labeled data, which demands significant time and cost. Most existing semi-supervised learning methods exclude pseudo-labels with high uncertainty from training. This leads to class imbalance issues and prevents learning in-depth representations beyond the class level. In this study, we propose a semi-supervised medical image segmentation method based on contrastive learning that leverages uncertainty information. The proposed method achieved DSC and Jaccard scores of 89.48 and 81.50, respectively, when using only 10% labeled data, outperforming existing methods.

목차

Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 구현
Ⅳ. 결론 및 향후 연구 방향
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0