메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
대한전자공학회 대한전자공학회 ISOCC ISOCC 2009 Conference
발행연도
2009.11
수록면
484 - 487 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we propose a RT level power reduction scheme which can be used for the applications that require ultra-low power consumption. A novel wasting-toggle-rate (WTR) based clock power reduction technique is introduced. It compares the WTR of a stimulus with the pre-computed threshold WTR of the circuit, and clock gating is applied to the circuit only if there is power-saving benefit. It considers not only clock enable signal, but also data signal and wasting toggle rate of the clock in a finegrained manner. The proposed technique is implemented at RT level in a complete CAD solution. We have tested the proposed technique on real industrial multimedia-mobile-processor design. For the accuracy of the power optimization results, all the power estimation results are measured at gate level after synthesis by using industrial 65 and 90 nanometer technology libraries. The experimental results show that using 65 nanometer technology, the technique reduces 35.46% power comparing with nonclock gating design and 18.80% power comparing with clockgating design by Power Compiler; and that using 90 nanometer technology, the technique reduces average 39.34% total power comparing with non-clock gating design and 27.76% total power comparing with clock-gating design by Power Compiler. For the design overhead of the proposed technique, it increases 1.17% of the critical path delay and reduces 0.81% of the area for the whole circuit comparing with the original circuit in 65 nanometer technology, and increases 2.75% of the critical path delay and reduces 0.75% area for whole circuit in 90 nanometer technology.

목차

Abstract
I. INTRODUCTION
II. PRELIMINARIES
III. TWTR-BASED CLOCK GATING
IV. POWER-OPTIMIZED CODE GENERATION
V. EXPERIMENTAL RESULTS
VI. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-569-001483304