메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
가천대학교 아시아문화연구소 아시아문화연구 亞細亞文化硏究 第六輯
발행연도
2002.2
수록면
141 - 163 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Our Scholastic Assessment test has a dual-design which aims to evaluate the scholastic competences and the learning achievements in the high school. On the other hand, the Center Test measures the scholastic attaiments. And so our test system adapts the intergrated test, focusing the communicative competences such as the listening skill and the reading skill. The Japanese test system uses the discrete-point test, placing emphasis on the cotrol of phomernes. intonation patterns, vocabulary items, structure patterns, the reading comprehension and the like. Knowing English is more than just knowing several discrete elements of English. Our problem is that we do not test any basic English ability and the question items are always set up. Such tendencies lead the students not to study English but to learn the know-how to answer the questions. Besides, our questions are so easy that students tend to neglect English studies and that the grading function is not so good. Japan makes great account of the elementary ability of English and their question patterns are not artless and systematical. Our test patterns are artful, up to date, and not systematical. For example, our reading test materials are all made of short paragraphs and none of long ones but those of Japan are of some short paragraphs, of some middle ones, and of long ones. Overall reading competece can be well estimated only by long paragraphs. Now it's time to recosider our Scholastic Assessment Test pattern for English and the one-way method of multiple-choice items should be improved as well. TOEFL's new computer based test system can be the useful model for us, I think.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0