메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
한국어에서의 품사 결정 문제는 형태론적 중의성 문제도 있지만, 영어에는 발생하지 않는 동품사 중의성 문제로 더 까다롭다. 이러한 문제들은 어휘 문맥을 고려하지 않고서는 해결하기 어렵다. 통계 자료 부족 문제에 쉽게 대처하는 모델이 필요하며 문맥에 따른 품사를 결정하고자 할 때 서로 다른 형태의 여러가지 어휘 문맥 정보를 반영할 수 있는 모델이 필요하다. 본 논문에서는 이런 점에 가장 적합한 최대 엔트로피(maximum entropy : ME) 모델을 품사태깅 작업에 이용하는 문제에 대해 다룬다. 어휘 문맥 정보를 이용하기 위한 자질함수가 매우 많아지는 문제에 대처하기 위해 필요에 따라 어휘 문맥 정보를 사전화한다. 본 시스템의 특징으로는 어절단위 품사 태깅을 위한 처리 기법, 어절의 형태소 분석열에 대한 어절 내부 확률 계산, ME 모델의 정규화 과정 생략에 의한 성능 향상, 디코딩 경로의 확장과 같은 점들이있다. 실험을 통하여 본 연구의 기법이 높은 성능의 시스템을 달성할 수 있음을 알게 되었다.

목차

요약
1. 서론
2. 관련연구
3. ME 모델 기반 태거의 성능 향상 기법
4. 다양한 어휘 문맥 정보의 이용을 위한 자질함수
5. 실험
6. 결론 및 향후 과제
참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0