메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 백오프 통계 정보를 이용하여 일반적인 복합명사 뿐만 아니라 외래어 미등록어를 포함한 복합명사도 잘 분해하는방법을 제안한다. 본 시스템은 입력으로 형태소분석기가 내주는 많은 분석 후보들을 받는다. 단음절 명사를 포함한 분석 후보도 포함되므로 입력 분석 후보의 수는 대단히 많게 된다. 본 모듈의 주요 작업은 이 중에서 가장 좋은 분석후보를 선택하는 것이 된다. 미등록어가 포함된 경우 이에 부합되는 분석 후보를 잘 선택하는 시스템의 개발을 목표로 한다. 이를 위해서 본 시스템에서 사용하는 주요 정보는 단어간 어휘 바이그램 통계정보이다. 또한 외래어 미등록어의 인식 정확성을 높이기 위해 음절 바이그램 정보도 이용한다. 통계 정보는 대량의 품사 태깅 말뭉치에서 추출하였다. 데이터 부족 문제를 해소하기 위해서 우리는 백오프(back-off) 평탄화(smoothing) 기법을 이용하였다. 미등록어가 포함된 복합명사의 분석 후보의 수를 줄이기 위한 기술도 연구하였다.

목차

요약
1. 서론
2. 관련 연구
3. 미등록어 포함 복합명사 분해후보 생성 기법
4. 정답 후보 선택을 위한 통계 정보의 이용
5. 실험 및 검토
6. 결론
참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0