메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
SVDD(support vector data description)는 one-class 서포트 벡터 학습 방법론 중 하나로 비정상 물체에서 정상 데이터를 구분하기 위해서 특징 공간에서 정의된 구를 이용하는 전략을 쓰는 방법론이다. 본 논문에서는 SVDD를 이용해서 노이즈가 섞인 비정상 데이터를 노이즈가 제거 된 정상 데이터로 복원하는 방법에 대해서 논한다. 그리고 저해상도의 이미지를 고해상도의 이미지로 복원함으로써 본 논문의 방법론이 어떻게 실용적으로 적용되는지에 대해서 다룬다.

목차

요약
1. 서론
2. SVDD
3. 실험
4. 결과 고찰
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-015036098